Journal of Organometallic Chemistry, 74 (1974) 289–305 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

CUMULATED DOUBLE BOND SYSTEMS AS LIGANDS

I. DIALKYLSULFURDIIMINE COMPOUNDS OF PLATINUM*

J. KUYPER and K. VRIEZE**

Anorganisch Chemisch Laboratorium, University of Amsterdam, Nieuwe Achtergracht 164–166, Amsterdam (The Netherlands) (Received February 8th, 1974)

Summary

The preparations and properties of a new series of compounds of the formula trans-[PtCl₂(dialkylsulfurdiimine)L] are reported. In the case of the dimethyl-, diethyl-, disopropyl- and dineopentyl-sulfurdiimine platinum compounds two isomers are present in solution, but only one isomer was observed for the di-t-butylsulfurdiimine derivative. ¹H and ¹³C NMR data show that the two isomers interconvert intramolecularly by two different routes. In one of the isomeric forms, unusually large low-field chemical shifts indicate the existence of non-bonded metal—alkyl interactions.

Introduction

Sulfurdiimines, RN=S=NR, have recently received increasing attention because of several interesting properties such as photoconductivity [2]. They may, in principle, coordinate via the sulfur atom (cf. SO₂), via the N-atom or through the N=S double bond, analogous to the situation in metal—allene compounds [3]. It seemed to us of interest to find out how the type of coordination of the sulfurdimine to the metal atom can be influenced by the substituents R, the oxidation state and electronic configuration of the metal, and the nature of the ligands attached to the metal atom. We have already shown that the compound *trans*-[PtCl₂(t-BuN=S=N-t-Bu)C₂H₄] exists in solution as two isomers [1], while a crystal structure determination showed that only one isomer was present in the solid state, and in this the ligand was bonded to the platinum atom through the nitrogen atom [4]. This publication describes further studies of alkylsulfurdimines and their platinum compounds, and aryl derivatives will be described in Part II.

^{*} For a preliminary communication see ref. 1.

^{**} To whom correspondence should be sent.

Experimental

I. Dialkylsulfurdiimines

The dialkylsulfurdiimines were prepared by a modification of the published procedures [5-7]. 0.2 mole of gaseous SF₄ is passed ver a stirred solution of 2 mole alkylamine in 150 ml pentane, the temperature being kept below -40° C. (In the case of dimethylsulfurdiimine 3 mole of methylamine is necessary, and no pentane is added.) A thick precipitate of RNH₃F is formed. The temperature is then slowly raised to 0° C and kept there for 1 h.

In the case of the diethyl-, diisopropyl-, di-t-butyl- and dineopentyl-sulfurdiimine, 150 ml of an ice-cold saturated aqueous K_2CO_3 solution containing ice is added in one portion to the reaction mixture. After 2 min of vigorous shaking two layers are formed. The layers are quickly separated, and the pentane layer containing the diimine is dried with potassium carbonate or sodium sulfate. After filtration the pentane is removed under reduced pressure (0°C, 1 cm Hg). The residue is vacuum distilled through a Vigreux column. Redistillation in vacuum gives very pure products.

In the case of the dimethylsulfurdiimine, the excess amine and the diimine are vacuum distilled in a cold trap (-60° C), while the reaction mixture is slowly warmed up to 40°C. Unchanged amine is removed at 0°C and at 1 cm Hg. The residue is vacuum distilled.

II. Dialkylsulfurdiimine compounds of platinum(II)

The preparation of trans-[PtCl₂PEt₃(MeN=S=NMe)] is given as an example.

100 mg (1.11 mmole) of dimethylsulfurdiimine in 1 ml benzene at 0° C is added to a stirred suspension of 384 mg (0.5 mmole) of $[(Et_3P)PtCl_2]_2$ [8] in 10 ml of dry benzene. Stirring is continued until the dimer has dissolved, which takes about 5 min. After filtration of the solution the solvent is removed at reduced pressure. The residue, which is sometimes oily, is dissolved in ether. After filtration, hexane is added and the solution is concentrated at 20°C until crystallization is observed. Further crystallization takes place in the cold (-30°C) (80% yield).

A different preparative route is used for the triphenylstibine compounds, for which the corresponding ethylene complex was used as a starting material. The preparation of the ethylene complex is described because it is new.

trans-[PtCl₂(Ph₃Sb)C₂H₄]. To a stirred suspension of 600 mg (1.02 mmole) [(C₂H₄)PtCl₂]₂ in fluorochloroform or chloroform (25 ml) is added dropwise a solution of 600 mg Ph₃Sb (1.70 mmole) in the same solvent (10 ml) at -30° C. After filtration of the yellow solution the solvent is evaporated off at -20° C. The remaining yellow solid, which should be kept cool, is recrystallized from chloroform/hexane (at -50° C). The yield is 80% (δ (C₂H₄) = 4.21 ppm).

trans-[PtCl₂(DBSD)(Ph₃Sb)]. To a cold (-25° C) solution of 1.0 mmole [PtCl₂(C₂H₄)(Ph₃Sb)] in 2.5 ml chloroform, a molar equivalent of dibutyl-sulfurdiimine in 10 ml chloroform is added. After some evolution of gas the solution is filtered. The solvent is evaporated off. The resulting residue is recrystallized from benzene/hexane in a refrigerator at -35° C.

Analytical data of the yellow-to-cream-coloured compounds are given in Table 1.

(°C) PEt ₄ PtCl ₂ (DMSD) ^d AsEt ₃ PtCl ₂ (DMSD) AsEt ₃ PtCl ₂ (DMSD) 1,2,, b 56.0-55.2 1,2,, b 57.0-55.2 1,2,, b 57.0-55.2 1					
PEt ₃ PtCl ₂ (DMSD) ^d 46.0-46.3 AsEt ₃ PtCl ₂ (DMSD) 56.0-55.2 DM 20.0-55.2	o	H	CI	S	Pt
AsEt ₃ PtCl ₂ (DMSD) 55.2	3.3 20.37 (20.	25) 4.65 (4.46)	14.90 (14.95)		
	5.2 18.45 (18.	(4) 4.18 (4.08)	13,90 (13.86)		
rrngriul2 (umsu) • 7/206H6" 85.485.6	5.6 42.14 (42.)	(3.63) (3.68)	10.60 (10.78)		
AsPh ₃ PtCl ₂ (DMSD) · C ₆ H ₆ ^D 83.4-83.6	3.6 42.02 (42.	17) 3.71 (3.68)	9.17 (9.58)	4.15 (4.33)	
SPr ₂ PtCl ₂ (DMSD) 46.2-46.4	3.4 20.85 (20.	25) 4.44 (4.25)	15.41 (14.95)	12.91 (13,51)	
Seel ₂ Pici ₂ (DMSD)	14.63 (14.	31) 3.42 (3.27)	13.80 (14.38)	6.62 (6.50)	
PEt ₃ PtCl ₂ (DESD) 51.9–52.1	2.1 23.86 (23.)	1) 5.17 (5.02)	14.09 (14.12)		
AsEt3PtCl2 (DESD) 60.6-50.7	0.7 22.16 (21.)	(9) 4.83 (4.62)	12.96 (12.98)	5.54 (5.87)	
PPh3PtCl2 (DESD) • ¹ /2C4H ₁₀ O ⁰	42.20 (42.	[7] 4.49 (4.42)	10.33 (10.37)		
PEt ₃ PtCl ₂ (DiPrSD) 38.638.7	3.7 27.19 (27.	(e) 5.61 (5.51)	13.11 (13.37)	6.19 (6.04)	
AsEt ₃ PtCl ₂ (DiPrSD) 42.1–42.3	2.3 25.03 (25.)	(1) 5.10 (5.09)	12.47 (12.35)	5.50 (5.58)	
AsPh3PtCl2 (DiPrSD)	40.32 (40.	12) 4.35 (4.07)	9.56 (9.86)	4.46 (4.43)	
PEt ₃ PtCl ₂ (DBSD) 87.8–88.8	3.8 30.52 (30.	(1) 6.17 (5.96)	12.47 (12.69)	5.63 (5.74)	
AsEt ₃ PtCl ₂ (DBSD) 102.1	27.94 (27.	30) 5.68 (5.52)	11.61 (11.77)	5.25 (5.32)	
PPh ₃ PtCl ₂ (DBSD)	44.03 (44.	4.96 (4.73)	10.32 (10.09)	4.80 (4.56)	26.90 (27.70)
AsPh3PtCl ₂ (DBSD)	41,41 (41.	33) 4.56 (4.46)	9.48 (9.50)	4.14 (4.29)	26.76 (26.13)
SbPh3PtCl2 (DBSD)	39.14 (39.	36) 4.42 (4.19)	8.99 (8.94)	4.42 (4.04)	
(C ₂ H ₄)PtCl ₂ (DBSD)	25.64 (25.	34) 4.65 (4.70)		6.67 (6.84)	41.58 (41,68)
PEt ₃ PtCl ₂ (DnPSD) 70.0-70.2	0.2 33.21 (32.	(5) 6.57 (6.36)	12.09 (12.09)	5.58 (5.47)	
AsEt ₃ PtCl ₂ (DnPSD) 49.0–49.2	30.80 (30.	(11) 6.06 (5.91)	11.04 (11.25)	5.11 (5.09)	
PPh3PtCl2 (DnPSD)	45.98 (46.)1) 5.22 (5.10)	9.75 (9.70)		

ANALYTICAL DATA FOR LPICI₂(DIALKYLSULFURDIIMINE).

TABLE 1

^a DMSD = dimethylsulfurdilmine; DESD = diethylsulfurdlimine; DiPrSD = diisopropylsulfurdiimine; DBSD = dibutylsulfurdiimine; DnPSD = dineopentylsulfur-diimine, ^b C_6H_6 = benzene, $C_4H_{10}O$ = ether,

Results

I. Dialkylsulfurdiimines

At temperatures of -60° C the ¹ H and ¹³C NMR spectra (Tables 2 and 3) show the presence of two isomers in unequal ratio for R = methyl, ethyl, isopropyl and neopentyl, but of only one isomer for R = t-butyl. In all cases the most abundant isomer has the asymmetric *cis*, *trans* configuration, as shown by the presence of two sets of signals of equal intensity for the N-CH_{3-n} (signals A and B in Table 2) and the (CH₃)_n groups (signal A' and B' in Table 2). In the case of the less abundant isomer, only one signal is observed for the N-CH_{3-n} and (CH₃)_n groups (signals C and C' in Table 2). The assignment is shown in Fig. 1. The *trans*, *trans* configuration is assigned to the less abundant isomer, as the *cis*, *cis* configuration is sterically much less likely.

The long range coupling of 1.4 c sec^{-1} of the MeN=S=NMe compound is noteworthy. The similarity between the strong solvent dependence of the high-

B	Temp.	Sol-	A	В	С	A'	Bʻ	<i>C</i> ′	J(H—H)
		vent							
CH ₃	30	CDCl ₃		3.57					
	30	C7D8		3.27					
	60	CDCl ₃	3.52	3.64	3.84				1.4
	-70	$\mathbf{C_7 D_8}$	3.47	2,96	3.05				1.4
C ₂ H ₅	30	CDCl ₃		3,88			1.29		7.1
	30	C ₇ D ₈		3.66			1.11		7.1
	60	CDCl ₃	3.85	3.90	4.16	1.37	1.30		7.1
	70	C7D8	3.83	3.29	3.46	1.21	0.93	0.97	7.1
i-C ₃ H ₇ ^b	30	CDCl ₃		4.46			1.24		6.2
	30	C7D8		4.31			1.13		6.2
	60	CDCl ₃	4.71	4.22	4.70?	1.31	1.29	1.31?	6.2
	70	C ₇ D ₈	4.86	3.56	4.31	1.24	0.97	1.03?	6.2
t-C4H9	30	CDCla					1.42		
	30	C7D8					1.35		
	60	CDCl ₃				1.51	1.36		
	70	C7D8				1.57	1.07		
neo-C ₅ H ₁₁ ^c	30	CDCl ₃		3.59			0.95		
	30	$C_7 D_8$		3.48			0.91		
	60	CDCl ₃	3.56	3.58	3.85	1.00	0.91	1.00?	
	-70	C∂D8	3.66	3.06	3.59	1.01	0.78	0.89	

TABLE 2. ¹H NMR DATA FOR R-N=S=N-R^a (Chemical shifts in ppm rel. TMS, J in c sec⁻¹)

^a The values given at 30°C are the measured signals of the collapsed A, B and C, and the collapsed A', B', and C' resonances respectively. ^b Very little of isomer C. ^c In this case A', B' and C' represent the resonances of the CH₃ groups.

Fig. 1. Structures of the sulfurdiimines and the assignment for Table 2.

field resonance of the asymmetric isomer and that of the resonance of the symmetric isomer is a reason for assignment of the signals B and B' to the *trans*-R group protons.

At higher temperatures the ¹ H NMR signals coalesce. The process responsible for the coalescence is probably the intramolecular conversion of the *cis*, *trans* isomer into the *trans*, *trans* isomer through rotation about the N=S bond or inversion at the N-atoms*. The activation parameters for DBSD are $A = 10^{13}$ sec⁻¹ and $\Delta E = 13$ kcal mole⁻¹. The rates decrease in the order t-Bu > i-Pr ~ Et ~ Me.

The ¹³C spectra (Table 3) show the interesting result that in almost all cases the groups A absorb at higher field than the groups B. Similarly A' absorbs at higher field than B'. The opposite is observed for the proton spectra, A and A' absorbing at lower field than B and B', respectively, in C_7D_8 .

IR and Raman data are given for a number of sulfurdimines in Table 4. The symmetric and asymmetric N=S=N stretching frequencies lie at about 1060 and 1190 cm^{-1} .

II. Dialkylsulfurdiimine compounds of Pt^{II}

A. Di-t-butylsulfurdiimine compounds of Pt^{II}

¹ H and ¹³C NMR spectra (Tables 5 and 9) of $[PtCl_2(DSBD)L]$ (L = PR₃, AsR₃, SbR₃, SR₂, SeR₂ and TeR₂; DSBD = di-t-butylsulfurdiimine) in solution

R	Temp. (°C)	A	В	С	A'	B'	C'	Other resonances
CH ₃	30		37.38					
-	-64	37.31	37.90	37.65				
C ₂ H ₅	30		45.77			17.16		
- •	64	45.55	46.51	45.90	15.76	18.70	17.90	
i-C3H7	30		51.99			24.68		
•••	64	50.90	53.11		22.99	26.16	25.30	
t-C4H9	30		60.43			30.56		
	-64	60.00	60.93		28.73	31.54		
neo-C ₅ H ₁₁	30		62.55			32.59 ^b		27.47 ^C
	-64	62.27	62.68		32.24 ^b	32.81 ^b		27.59 ^c ; 27.15 ^c

TABLE 3. ¹³C NMR DATA^G FOR R-NSN-R IN C₇D₈ (ppm relative to TMS)

^a The values given at 30°C are the measured signals of the collapsed A, B and C and the collapsed A', B' and C' resonances respectively. ^b Resonances of the tertiary carbon atoms. ^c Resonances of the 13 CH₃ groups.

FABLE 4. v_{s} , v_{as} AND δ (cm)	FOR THE SULFURDIIMINES,	DERIVED FROM IR AND RAMAN DATA
--	-------------------------	--------------------------------

Compound	v _s (NSN)	v _{as} (NSN)	δ (NSN) ^a	· _
DMSD	1075	1207	807	
DESD	1071	1184	773	
DiPrSD	1056	1185	756	
DBSD	1064	1194	677	

^a The assignment of δ is somewhat doubtful.

* During the preparation of this paper, Grunwell et al. [9] described the temperature dependence of the proton signals of R-N=S=N-R (R = Me, t-butyl). Their results agree with ours.

L	Solv.	Ia	J(Pt)	Ib	Resonances of L
PEt ₃	C ₇ D ₈	1.93	2.7	0.98	
-	CDCl ₃	1.77	2.7	1.44	1.90m; 1.19m
AsEt ₃	C7D8	1.96	3.5	0.98	1.68q; 1.09t
-	CDCl ₃	1.81	3.5	1.45	1.93q; 1.27t
SbEt ₃	C7D8	1.95	2.5^{b}	1.00	1.56q; 1.16t
PPh3	$C_7 D_8$	1.99	2.2	0.99	
AsPh ₃	$C_7 D_8$	2.02	3	0.99	
SbPh ₃	C7D8	2.03	2.5 ^b	0.99	7.80m; 7.00m
•	CDCI3	1.90	2.5 ^b	1.48	7.68m; 7.40m
	C6D6	2.06	2.5 ^b	0.95	7.80m; 7.00m
SPr ₂	C ₆ D ₆	1.97	2.5	0.92	
-	CDCla	1.83	2.5	1.49	
SeEt ₂	C ₆ D ₆	1.99	2,5	0.92	2.50m; 1.13t
TeEt2	C ₆ D ₆	2.01	2.5	0.94	
PPh ₂ Me	C ₆ D ₆	1.93		0.94	1.54 J(P) = 11.5; J(Pt) = 34
-	CDCla	1.81		1.47	1.83 J(P) = 11.5; J(Pt) = 34
C ₂ H ₄ ^c	CDCl ₃	1.84	1.5	1.54	4.76 J(Pt) = 68

¹H NMR DATA^{*a*} OF LPtCl₂(DBSD) AT 30° C (Chemical shifts in ppm rel. TMS, coupling constants in c sec⁻¹ The resonances of the free ligand are at -60° C; 1.58 and 1.08 in C₇D₈ and 1.51 and 1.36 in CDCl₃.

^a m = multiplet; q = approx. quartet; t = approx. triplet. ^b The intensity of the Pt-satellites is lower than the expected 1/4/1 ratio. ^c Measurement at -60° C. A second isomer exists for this compound with the resonances: δ (DBSD) 1.69 and δ (C₂H₄) 4.52 with J(Pt) = 68 c sec⁻¹.

(CDCl₃, C₆D₆ and C₇D₈) show the existence of only one isomer. There is a low field methyl signal with a ¹⁹⁵ Pt-coupling of about 2–4 c sec⁻¹ and a high field signal, which is strongly solvent dependent, without ¹⁹⁵ Pt-coupling (Table 5). This is in contrast to the ¹³C spectra, which show Pt-coupling of about 8 c sec⁻¹ with the ¹³ CH₃ signal lying at high field, while no Pt-coupling with the low field ¹³ CH₃ signal is observed. ¹³C off resonance experiments show that the low field ¹ H signal and the high field ¹³C signal belong to the same N–C(CH₃)₃ group. Since both signals show ¹⁹⁵ Pt-coupling and have a down-field chemical shift it is concluded that this group is coordinated to the Pt-atom via the N-atom, the structure being analogous to that in [PtCl₂(DBSD)C₂H₄] in the solid state [4]. The ligand L is *trans* to the DSBD group, as in [PtCl₂(DSBD)C₂H₄] which was confirmed by dipole moment studies (dipole moments of 3.2–3.9 D for [PtCl₂-(RNSNR)L] with R = CH₃, C₂H₅, C₃H₇, C₄H₉, C₅H₁₁ and L = AsEt₃ and PEt₃) and by the Pt–Cl stretching frequencies in the IR and Raman spectra at about 300 to 350 cm⁻¹.

The proposed structure is shown in Fig. 2. At higher temperatures (60-100°C)

 $C(CH_3)_3$ CI S = N $L = PR_3, AsR_3, SbR_3$ L - Pt - N SR_2, SeR_2, TeR_2 $CI C(CH_3)_3$

Fig. 2. Structure of [PtCl2(DBSD)L].

TABLE 5

Fig. 3. Exchange mechanism of the two inequivalent chemical sites of [PtCl2(DBSD)L].

the methyl ¹ H signals broaden. This broadening is independent of the concentration of the complex and of added free ligand. The absence of intermolecular sulfurdimine exchange is further confirmed by double resonance experiments at $+50^{\circ}$ C, which show that there is exchange only between the t-butyl sites of the complexed ligand. It is concluded that the reaction scheme of Fig. 3 is responsible for the observed coalescence.

The exchange rates calculated from the broadening of the methyl signals fall in the following order: $AsEt_3 > AsPh_3 \sim PEt_3 > PPh_3$ (measured from 65–90°C). The activation parameters are in the range 10^{12} – 10^{13} sec⁻¹ (A) and 18–19 kcal mole⁻¹ (ΔE).

B. Dimethyl, diethyl, diisopropyl, and dineopentyl compounds of Pt^{II}

1. Structural determination. The results for the t-butyl sulfurdimine metal systems prompted us to investigate the influence of the bulkiness of the R-groups by successively replacing the protons in the methyl group of $[PtCl_2(MeN=S=NMe)L]$.

In Tables 6, 7 and 9 the ¹ H and ¹³C NMR resonances are recorded for compounds [PtCl₂(RN=S=NR)L] with R = methyl, ethyl, isopropyl, neopentyl and t-butyl. Except in the case of R = t-butyl, two isomers were observed, in varying ratios. The concentration of the less abundant isomer decreases in the order methyl < ethyl ~ isopropyl > neopentyl \geq t-butyl (not observed). The ¹ H NMR pattern for the methyl derivative is shown schematically in Fig. 4 as an example. From integration of the signals and on basis of the long-range CH₃—CH₃ coupling of 1.4 c sec⁻¹, it is concluded that signals A and C belong to the less abundant isor For this isomer the ¹⁹⁵Pt—CH₃ coupling constants lie in the range 11—16 and 20—34 c sec⁻¹, respectively. The signals B and D belong to the more abundant isomer with ¹⁹⁵Pt—CH₃ coupling only to signal B in the range 20—34 sec⁻¹.

The ¹³C spectra show similar patterns, but they are less informative owing to overlapping of peaks.

In principle there are seven possible isomeric forms (Fig. 5) for trans-[PtCl₂-(Me-N=S=N-Me)L], if we exclude the possibility in which the sulfurdiimine is bonded to the Pt-atom via the N=S double bond. Such bonding is unlikely,

(continued on p. 298)

	×	Isomer	Ratio I/II	Solvent	Resonances of Ia or IIa; J(Pt); J(P)	DMSD ^a Ib or IIb;J(Pt)	Resonances of L ^D
Et _{3.}	5	1	2.3	CADA	3.62: 20.6: 2.7	0 79	
E13	ថ	II	2,3	CADA	3.26: 21: 2.7	4.42 110 6	
'Et.3	ฮ	1	61	CDC13	3.74:19	3.73	
Eta	5	11	5	CDC13	3.74, 19	4.48:11	
AsEta	5	I	2.2	C _{6D6}	3.62; 26	2.69	1.70m: 1.074
\sEtj	ច	II	2.2	C ₆ D ₆	3.31; 26	4,51,13,5	1.630: 1.014
AsEt3	Br	1	1	C6D6	3,64; 26	2.73	1.810:1.064
\sEt ₃	ħ	11	1	C ₆ D ₆	3.32; 26	4.52:14	1.730: 1.001
AsEt ₃	I	I	0.5	C ₆ D ₆	3.60; 27	2.69	1.970: 1.01t
ABEt3		II	0.5	C ₆ D ₆	3,29; 28	4.47; 13.5	1.880:0.94t
\sEt3	ວ	I	2	cDCl ₃	3.77; 26	3.73	1.96q: 1.28t
AsEt ₃	0	II	8	CDCI3	3.77; 26	4.56; 13.5	1.930: 1.28t
bEt ₃	อ	, , 1	e 19	$c_6 D_6$	3.66; 27.5	2.71	1.60q: 1.15t
bEt ₃	ប	II	e0	$c_6 D_6$	3.37; 27	4.58; 14	1.540; 1.131
Ph3	ច	1	2.5	$c_{6} D_{6}$	3.69; 23; 3	2.69	
Eųá	ច	=	2.5	c,D,	3.34; 22.5; 2.7	4.45; 11.5	
sPha	ប	I	1.9	C ₆ D ₆	3.67;30	2.69	
Ehla	ซ	11	1.9	C,D,	3.37;29	4.55; 13	
PhMe2	ច	I	en en	$c_7 D_8$	3.61;21;3	2.76	1.56; J(Pt) 11.5; J(P) 35
PhMe2	ថ	=	ñ	c,D ₈	3.28; 22; 3	4.34: 10.5	1. 49. LT (14)J. 48. L
Pr2	0 0	1	1.5	C6D6	3.59; 32.5	2,66	0.86t
Pr2	ថ	п	1.6	$c_6 D_6$	3.26; 33.5	4.51:16	0.82t
ieEt_2	อ	I	1.4	C,D,	3.61; 33.5	2.68	1-164
teEt2	ច	ш	1.4	C,D,	3,29; 33,5	4.54:16.5	1-084
'eEt2	ច	1	2	C,D,	3,64; 30,5	2.68	1.21+
'eEt,	5	11	¢	, c, c,	0 00.00		

^aAll DMSB resonances have a long-range methyl-methyl coupling of 1.4 sec⁻¹. b_q and t refer respectively to approximate quartet and triplets

...

• .

- - .

Ľ	R	Temp. (°C)	Isomer	Ratio	N-CH3-n resonance.	s of R	(CH ₃) _n resonances (of R
				11/1	Ia or IIa; J(Pt); J(P)	Ib or IIb;J(Pt)	Ia' or IIa'; J(Pt)	Ib' or IIb'
A aR.t.	USMC	30 (30)	I	2.2 (2)	3.62 (3.77); 26	2.69 (3.73)		
Cherry			п	•	3.31 (3.77); 26	4.61 (4.56); 13.5		
A effect	DESD	30 (20)	-	1.4 (1.2)	4.37 (4.32); 29	3.12 (4.00)	1.50 (1.51?)	0.73 (1.35?)
Entrow			II	•	3.75 (4.09); 32	5.38 (5.24); 13	1.52 (1.70?)	1.40 (1.46?)
A 512+2		0 (20)	•	1.1 (1.3)	5,18 (5,12); 31	3.50 (4.35)	1.71 (1.59)	0.76 (1.31)
Enge			• 11		3.99 (4.53); 34	7.92 (7.63); 12	1.55 (1.66)	1.49 (1.41)
A . Et 4 .	nean	307 307					1.96 (1.81); 3.5	0.98 (1.45)
AsEt3	Ucau Nanch		4 ⊨	97 (33)	4.52 (4.28): 34	2.96 (3.63)	1.33 (1.24)	0.65 (0.93)
ASEU3	ne-zun	30 (127)	- 11		3.75 (3.85); 37	5,18 (4,88); 12	1.22 ()	1.11 (1.05)
064.2	nesn	307 30)	; -	1.6 (1.2)	4.35 (4.31); 24; 4	3.13 (3.99)	not distingui	ishable
E 111			• =		3.73 (4.13); 24; 4	5.21 (5.09); 11	not distingui	ishable
A cDh c	neen	30	; -	1.1	4.42:33	3.15	1.55	0.73
ABF U3		8	• =		3.77; 36	6.45; 11	1.67	1.32
190	Condicu	que	; -	2.3	5.21:7:6	3.67	1.69	0.82
ยาสม		2	• 11	2	4.15:7:6	7.56; 7	1.60	1.62
, 4 0 4 4		anb	: -	1.2	5,21:7	3.59	1.79	0.80
AME II 3		2	• =	1	4,08;7	8.02; 7	1.61	1.42
164.	Dapen.	-20°	;	4	4.49:26:4	2.85	1.27	0.62
Engl		2	· 11	1	3.65; 29; 4	4.98; 10.5	1.13	1.05
- TUP	D-Den	о ^с	, -	ц	4.55:30:5	2,93	1,33	0.64
rrn3		>	' =	ı	3.72:31:5	5.14:10	1.20	1,06

TABLE 7

.

Fig. 4. General ¹H NMR pattern and NMDR results for DMSD in the complexes [PtCl₂(DMSD)L] in C₇D₈ at 30°C.

since even at low temperature one Me-signal for $PMe_2 Ph(=L)$ is found. Furthermore the double bond systems seem undisturbed, as the long range methylmethyl couplings are the same as in the free ligand.

The isomeric form I has been found in the solid state for trans-[PtCl₂-(DBSD)L] with $L = C_2H_4$ [4]. Signals B and D are assigned to this configuration. Signal B, which lies at lower field than D, probably belongs to the N-CH₃ group directly bonded to Pt, as it has a large Pt-coupling and a small phosphorus coupling in the case of the phosphine compounds. Signal D, showing no Pt-coupling and strong solvent dependence thus relates to the free N-CH₃ group of isomer I.

Fig. 5. Possible isomers of [PtCl2(DMSD)L].

Fig. 6. Structures of [PtCl₂(RNSNR)L] and the assignment for Table 7.

Isomeric form II (Fig. 5) is assigned to the less abundant isomer of $[PtCl_2 - (MeN=S=NMe)L]$. Signal C with a chemical shift and coupling constant $J(Pt-CH_3)$ similar to signal B is assigned to the N-CH₃ bonded to Pt. In the case of the phosphine compounds, signal C also shows phosphorus coupling of the same order of magnitude, as is observed for signal B of isomer I. Signal A, which shows Pt-coupling of about 10-16 c sec⁻¹, but no phosphorus coupling, has a very low chemical shift. These factors strongly indicate that the protons responsible for signal A are situated very near to the platinum atom.

Configurations IV to VII can readily be excluded on the basis of the NMR and kinetic results. Configuration III might be an alternative for the less abundant isomer of $[PtCl_2(MeN=S=NMe)]$, but in this case much higher chemical shifts and stronger solvent dependencies would be expected for the N—CH₃ protons of the non-coordinated end of the sulfurdiimine, as found for the more abundant isomer (configuration I).

The N—CH_{3-n} and (CH₃)_n (n = 0, 1, 2, 3) NMR resonances of [PtCl₂-((CH₃)_nCH_{3-n}N=S=N—CH_{3-n}(CH₃)_n)L] and the CH₂ and CH₃ signals of [PtCl₂ (neopentyl N=S=N neopentyl)L] are shown in Table 7, the notation used being shown in Fig. 6. It is especially significant that the signals of the N—CH_{3-n} groups all follow the same chemical shift sequence with the chemical shifts of the ¹ H NMR resonances falling in the order IIb < Ia < IIa < Ib. It is clear from Table 7 that the IIb group again lies at the lowest field. The low field shift is particularly large for the N—CH-group (IIb) of the isopropyl compound (~ 3 ppm) relative to the free ligand.

The comparison of the chemical shift differences between the lowest field resonance IIb and the corresponding lowest field resonance of the free cis, trans

R	<i>m</i> = 3— <i>n</i>	AsEt3 {∆}	$\Delta X m$	РЕt ₃ (Д)	$\Delta \times m$
СНз	3	1.04	3.12	0.94	2.82
CH ₂ CH ₃	2	1.55	3.10	1.38	2.76
CH ₂ C(CH ₂) ₃	2	1.52	3.04	1.32	2.64
CH(CH ₃) ₂	1	3.06	3.06	2.70	2.70

¹H CHEMICAL SHIFT DIFFERENCE \triangle BETWEEN THE IN RESONANCE OF LPICI₂ (RNSNR) AND THE A RESONANCE OF RNSNR (*m* = number of protons of the N—CH_{3—*r*} group).

isomer (as shown in Table 8) is very revealing. If these figures are multiplied by 3, 2, 1 and 2 for R = Me, Et, i-Pr and neo-P, respectively i.e. by the number of protons of the N-CH_{3-n} group, almost constant values of about 3.08 for $L = AsEt_3$ and 2.73 for $L = PEt_3$ are obtained. The results indicate that there is still free rotation of the methyl group IIb in the isomer II of $[PtCl_2(DMSD)L]$, but that rotation of the IIb group is rather restricted for isomer II in the other compounds.

The results also indicate that the Pt—H distances between Pt and the protons of the free N—CH_{3-n} group IIb of isomer II is probably fairly constant. Models show that the Pt—H distance may vary between extremes of 1.55 and 2.4 Å, which is short by comparison with the sum of the covalent radii of Pt²⁺ and H (about 1.72-1.82 Å).

In agreement with our assignment we find that the chemical shift pattern of the $(CH_3)_n$ groups, which are *further* away from the platinum atom, are different from that of the N-CH_{3-n} groups. In particular the IIb' signal is never found at the lowest fields (Table 7).

The ¹³C results are given in Table 9.5The chemical shift differences between IIb and the A absorption of the free ligand are 4 to 6 ppm, i.e. again fairly constant.

Finally it is noteworthy that platinum coupling occurs with IIb, Ia' and IIa', but not with the other absorptions and that this coupling is of an unusual type. Direct through space coupling with the IIb proton and carbon atoms is a possibility in view of the structure of configuration II.

2. Kinetic measurements. At temperatures above room temperature the signals of all four methyl groups of isomers I and II of $[PtCl_2(MeN=S=NMe)L]$ broaden, from which one might conclude that all four Me-groups exchange with each other. However, double resonance experiments at ambient temperature have shown conclusively that A exchanges only with D, and B only with C (Fig. 4). This interchange is intramolecular, as is shown by concentration dependence measurements in the presence of free sulfurdiimine. Furthermore there is no indication of a disappearance of the Pt-satellites when the double resonance experiments are carried out on the central resonances of the B and C absorptions. Finally, if the exchange were intermolecular, signal A would exchange also with C and B with D, which is not the case.

The kinetic results may be explained by the reaction scheme shown in Fig. 7. In this the sulfurdiimine remains bonded to the metal atom by the same

TABLE 8

TABLE 9

¹⁴C NMR DATA FOR THE DIALKYLSULFURDIIMINES AND THEIR COMPLEXES LPtCl₂ (RNSNR) (Chemical shifts in hpm rel. TMS, coupling constants in Ť

	æ	lso- mer	Sol- vent	Temp. (°C)	la or IIa	Ib or IIb; J(Pt)	Ia' or IIa';J(Pt)	Ib' or IIb'	L; J(Pt); /(P)	L; J(Pt); J(P)
ŝta	DMSD	1	C ₇ D ₈	30	39.68	39.32			14.92; 35; 40	7.78, 23; 3
3t3	DMSD	Ħ	C ₇ D ₈	30	39.55	42.66; 10			14.52; 35; 40	7.66; 23; 3
sEt3	DMSD	I	C7D8	30	40.09	39.51			13.23; 47	8,96; 16
iEt3	DMSD	11	C _{7D} B	30	40.09	42.52; 12			12.85; 47	8,96, 16
iEt3	DMSD	I	C6D6	30	40.27	39.35			13.26; 46	8,97, 16
\$Et3	DMSD	I	C6D6	30	40.27	42,63; 12			12.86; 46	8.97; 16
'hM∜2	DMSD	I	C6D6	30	40.04	39.40			12.48 ⁰ ; 38; 45	
hMt2	DMSD	II	C6D6	30	40.04	42.40; 10			$12.08^{a}; 3\beta; 45$	
čt3	DESD	1	C ₇ D ₈	0	47.00	48.20; 12	15.34;	17.43	14.55; 35; 40	7,75; 23; 3.5
ēta	DESD	II	C7D8	0	48.97	50.50; 12	18.72;	16,05	14.14; 35; 40	7,53; 23; 3
aEtg	DESD	ľ	C6D6	30	47.64	48.29	15.43; 7	17.32	13,19;46	8,97;16
sEt ₃	DESD	II	C ₆ D ₆	30	49.48	50.45; 17	18.66; 7	16.04	12.82;46	8,90; 16
eta	DiPrSD	l	C7D8	50	55.68	55.44	22.69; 7	26.22	13.76; 35; 40	7,71; 22; 3
2t.3	DiPrSD	11	C ₇ D ₈	-50	58.04	55.03; 20	26.42; 7	23,59	13,50; 35; 40	7,35; 22; 3
aEt3	DiPrSD	H	C ₇ D ₈	~20	56.24	55.53	22.95;10	25.27	12,48;45	9,00; 22
sEt ₃	DiPrSD	'n	c_{7D_8}	-20	58.57	54.97;20	26,45;10	23.63	12.23; 45	8,76; 22
sEt3	DiPrSD	ą.	C6D6	30	56.47	55.63	23.07	25.27	12.97; 47	8,93; 22
Et3	DiPrSD	l I p	C ₆ D ₆	30	58.83	55.03; 20	26.44	23,68	12.97; 47	8,93; 22
Lt3	DBSD	 .	$c_{7}D_{8}$	30	68.54	63.50	29.64; 8	31,11	14.70; 37; 40	7,73; 24; 3.5
Bt3	DBSD	-	C6D6	30	69.19	63.75	29.85; 8	31.18	13.06; 48	8.97;17
<u>a</u> ta	DnPSD	1	$c_{7}D_{8}$	-20	63.78	60.04	34.96^{c}	32.74 ^c	14.41; 35; 40	7,64; 23; 3
							28.60	26.80		
\$t3	DnPSD	11	C7D8	-20	64.16	68,68	33.13 ⁶ 28 21	32,33 ^c 27,48	14,21; 35; 40	7,64; 23; 3
8Etg	DaPSD	H	C7DB	-20	63.78	60.06	34.92°	32.74 ^c	12.68; 44	8,89;15
			r				28.69	26.88		
yEt3	DnPSD	ħ	C7D8	-20	64.21	68.73	33.12^{c}	32.26 ^c	12,39;44	8,89; 15
							28.19	27.62		

spunodu 2 5 Isomers. 1100 coalesced, JUL ę 01 17 113 " Quily the "CH3 resonance; of the L are given. " The signals are broad, and the resonances values are given for the β and γ^{13} c-atom of the ligand.

Fig. 7. The interconversion of the two isomers of [PtCl2(DMSD)L].

N-atom (I \leftrightarrow III \leftrightarrow II). If an N-N jump occurs, as in the case of the t-butylsulfurdiimine compounds, signals B and D would exchange and also signals A and C. The interconversion rates decrease in the order Cl > Br > I and AsEt₃ ~ AsPh₃ > SPr₂ > PEt₃ ~ PPh₃. The kinetic parameters have values of 10^{12-13} sec⁻¹ (A) and 17-18 kcal mole⁻¹ (ΔE) for the more abundant isomer.

Double resonance experiments revealed that the kinetic behaviour of the ethyl (at 0°C) and isopropyl derivatives (at -20° C) is similar to that of the methyl compounds (at 30°C), i.e. isomers I and II interconvert by rotations (or inversions at N), while the platinum atom remains bonded to the same nitrogen atom. The kinetic behaviour of the neopentyl compound could not be satisfactorily established, as the amount of isomer II is too small for precise measurements, but the features appear to be similar. The interconversion rates decrease in the order i-Pr > Et > Me.

At temperatures higher than those considered above, both line width change and NMDR measurements show that in addition to the above reaction type there is also a reaction involving an intramolecular migration of the platinum atom from one N-atom to the other and vice versa; such migration was observed for the t-butylsulfurdiimine metal compounds.

C. Ligand resonances

The ligand of interest is PMe_2Ph , as the methyl resonance gives information about the trans influence of the *trans* ligand. For all compounds the methyl peak appears at about 1.80 ppm (in CDCl₃) and a ¹⁹⁵Pt—CH₃ coupling of about 33—35 c sec⁻¹ and a ³¹P—CH₃ coupling of about 12 c sec⁻¹. Very similar values are observed for *cis*-(PMe₂Ph)₂PtCl₂ [10]. This indicates that the RN=S=NR ligands have *trans* influences of the same order as Cl⁻. As far as can be observed, for all compounds, the L resonances (¹ H) of isomer II are at higher fields than those of isomer I (by 0.1 ppm).

Discussion

The sulfurdiimines themselves have received little attention. A preliminary report by Leandri et al. [11] revealed that the compound p-MeC₆H₄N=S=NC₆H₄-Me-p' crystallises in the *cis,trans* configuration. In agreement, we find that in solution the *cis,trans* configuration is the most stable, in contrast to the predictions of Grunwell and Danison [12] for MeN=S=NMe*. The latter authors also predicted that interconversion between the *cis,trans* isomer and the *trans,trans* isomer should proceed by inversion at the nitrogen atom for the H-N=S=N-H compound, but by rotation about the N=S bond in the case of MeN=S=NMe. We are not able to choose between these two mechanisms, although the rotational process must occur in the metal compounds (see later). Finally it is relevant to note that in the case of the imines C=N the inversion mechanism is probably always responsible for the interconversion of *syn* into *anti* isomers and vice versa [13].

The results on the alkylsulfurdiimine platinum compounds show that in all cases the sulfurdiimine is very probably coordinated via the N-atom. Coordination via the S-atom may be less favoured, because the N-atom carries the higher negative charge. It must be appreciated, however, that the sulfurdiimines are structurally similar to sulfur dioxide, which is known to coordinate almost always via the sulfur atom. Also, there is no valid reason why coordination via the N=S double bond should not occur. Further research is being directed to investigating whether the last two modes of coordination can be realised in other complexes.

If we now consider the differences between the various alkylsulfurdiimine platinum compounds, it is clear that steric factors are an important influence on the type and ratio of the isomers I and II and on the kinetic behaviour. From steric considerations structure I should in general be the more stable, as is observed. However, the structure of isomer II is fairly stable, which may be due to the stabilising influence of a $Pt \cdots H-C$ interaction in a situation otherwise sterically rather unfavourable. This interaction may increase in the series $LPtX_2$ -(DMSD) in the order X = Cl < Br < I (Table 6) owing to increasing mutual polarisation (soft—soft interaction), so that isomer II may become relatively more stable as long as the steric interaction of the methyl group with the halogen atom is not too large.

Especially interesting is the large low-field chemical shift of the protons IIb in the first coordination sphere, and even of the carbon atoms in the second coordination sphere. The origin of this phenomenon has been little studied [1, 16] and merits more attention. The major cause of the antishielding is probably the paramagnetic anisotropy of the platinum atom, which causes downfield shifts if the protons are situated close to the metal and above the bonding plane of the planar molecule. A similar suggestion was made by Miller et al. [15] in the case of alkenylaryl compounds of Ni^{II} and Pd^{II}.

From the kinetics of the interconversions, it is clear that in the case of the t-butylsulfurdiimine metal compounds the only observable process is an intramolecular N—N jump (Fig. 3), which probably proceeds via a five-coordinated

^{*} Grunwell et al. [9] recently reported that the *cis, trans* configuration for R = Me and t-Bu is the most stable, as found by ¹H NMR.

Fig. 8. A possible intermediate in the exchange of the two t-butyl groups of [PtCl₂(DBSD)L].

complex with a distorted trigonal bipyramidal structure, in which the diimine acts as a bidentate ligand (Fig. 8). Inspection of such a five-coordinated compound shows that the diimine must be in the *trans* configuration (configuration III as intermediate) (Fig. 3), as the electron pairs are then in a favourable position for bonding to the platinum atom. In agreement with this is the observation that the rate of this process decreases from $L = AsR_3$ to $L = PR_3$, which is the trend generally observed for decreasing stability of five-coordinated compounds [17, 18].

This N—N migration is also observed for other alkylsulfurdiimine metal compounds at elevated temperatures, but it occurs alongside the process in which the platinum atom remains bonded to the same N-atom and which is significant at even lower temperatures The first step of this latter process must involve rotation about the N=S bond, as an inversion at the nitrogen atom cannot give the observed result (Fig. 6). The second step is a rotation about the other N=S bond (or an inversion at the noncoordinated nitrogen atom). The rate of the process decreases with increasing donor ability of L. The fall in rate may therefore be caused by an increasing N=S bond strength, although steric factors will be involved also.

Acknowledgement

We thank Mr. Y. Tan for the analyses, Mr. A.M. Wilmans for recording the ¹³C NMR spectra, and Dr. A. Oskam for valuable help and discussions.

References

- 1 J. Kuyper, K. Vrieze and A. Oskam, J. Organometal. Chem., 46 (1972) C25.
- 2 F.P. Olsen and J.C. Barrick, Inorg. Chem., 12 (1973) 1353.
- 3 H.E. Wilson and K. Vrieze, J. Organometal. Chem., 54 (1973) 403.
- 4 R.T. Kops, E. van Aken and H. Schenk, Acta Crystallogr., B29 (1973) 913.
- 5 B. Cohen and A.S. MacDiarmid, J. Chem. Soc. (A), (1966) 1780.
- 6 D.H. Clemens, A.J. Bell and J.L. O'Brien, Tetrahedron Lett., 20 (1965) 1487.
- 7 R. Appel and J. Kohnke, Chem. Ber., 103 (1970) 2152.
- 8 J. Chatt and L.M. Venanzi, J. Chem. Soc., (1955) 2787.
- 9 J.R. Grunwell, C.F. Hoyng and J.A. Rieck, Tetrahedron Lett., 26 (1973) 2421.
- 10 J.M. Jenkins and B.L. Shaw, J. Chem. Soc. (A), (1966) 770.
- 11 G. Leandri, V. Busetti, G. Valle and M. Mammi, Chem. Commun., (1970) 413.
- 12 J.R. Grunwell and W.C. Danison Jr., Tetrahedron, 27 (1971) 5315.
- 13 I.O. Sutherland, in E.F. Mooney, ed., Annual Reports on NMR Spectroscopy, Vol. 4, Academic Press, New York, 1971, p. 71.

•

- 14 D.R. Fahey, J. Organometal. Chem., 57 (1973) 385.
- 15 R.G. Miller, R.D. Stauffer, D.R. Fahey and D.R. Parnell, J. Amer. Chem. Soc., 92 (1970) 1511.
- 16 D.M. Roe, P.M. Bailey, K. Moseley and P.M. Maitlis, Chem. Commun., (1972) 1273.
- 17 A.D. Westland, J. Chem. Soc., (1965) 3060.
- 18 K. Vrieze and P.W.N.M. van Leeuwen, in S.J. Lippard, ed., Progress in Inorganic Chemistry, Vol. 14, Wiley-Interscience, New York, 1971, p. 1.